68 research outputs found

    Toward Reverse Engineering of VBA Based Excel Spreadsheet Applications

    Get PDF
    Modern spreadsheet systems can be used to implement complex spreadsheet applications including data sheets, customized user forms and executable procedures written in a scripting language. These applications are often developed by practitioners that do not follow any software engineering practice and do not produce any design documentation. Thus, spreadsheet applications may be very difficult to be maintained or restructured. In this position paper we present in a nutshell two reverse engineering techniques and a tool that we are currently realizing for the abstraction of conceptual data models and business logic models.Comment: In Proceedings of the 2nd Workshop on Software Engineering Methods in Spreadsheets (http://spreadsheetlab.org/sems15/

    Do Memories Haunt You? An Automated Black Box Testing Approach for Detecting Memory Leaks in Android Apps

    Get PDF
    Memory leaks represent a remarkable problem for mobile app developers since a waste of memory due to bad programming practices may reduce the available memory of the device, slow down the apps, reduce their responsiveness and, in the worst cases, they may cause the crash of the app. A common cause of memory leaks in the specific context of Android apps is the bad handling of the events tied to the Activity Lifecycle. In order to detect and characterize these memory leaks, we present FunesDroid, a tool-supported black box technique for the automatic detection of memory leaks tied to the Activity Lifecycle in Android apps. FunesDroid implements a testing approach that can find memory leaks by analyzing unnecessary heap object replications after the execution of three different sequences of Activity Lifecycle events. In the paper, we present an exploratory study that shows the capability of the proposed technique to detect memory leaks and to characterize them in terms of their size, persistence and growth trend. The study also illustrates how memory leak causes can be detected with the support of the information provided by the FunesDroid tool

    A GUI Crawling-based technique for Android Mobile Application Testing

    No full text
    As mobile applications become more complex, specific development tools and frameworks as well as costeffective testing techniques and tools will be essential to assure the development of secure, high-quality mobile applications. This paper addresses the problem of automatic testing of mobile applications developed for the Google Android platform, and presents a technique for rapid crash testing and regression testing of Android applications. The technique is based on a crawler that automatically builds a model of the application GUI and obtains test cases that can be automatically executed. The technique is supported by a tool for both crawling the application and generating the test cases. In the paper we present an example of using the technique and the tool for testing a real small size Android application that preliminary shows the effectiveness and usability of the proposed testing approach. 1

    Web application testing in fifteen years of WSE

    No full text
    Over the last fifteen years, Web applications have evolved from the early simple and hyper-text based ones into the more complex, interactive, usable and adaptive applications of the new generations. New paradigms, architectures, and technologies for developing Web-based systems continuously emerge and transform this specific context. At the same time, new techniques and tools for effectively testing them have been proposed. This paper reports some relevant contributions about the Web application testing topic that appeared in the past editions of the Web Systems Evolution international symposium (WSE) and discusses some future trends for this specific field

    A Technique for Parallel GUI Testing of Android Applications

    No full text
    There is a large need for effective and efficient testing processes and tools for mobile applications, due to their continuous evolution and to the sensitivity of their users to failures. Industries and researchers focus their effort to the realization of effective fully automatic testing techniques for mobile applications. Many of the proposed testing techniques lack in efficiency because their algorithms cannot be executed in parallel. In particular, Active Learning testing techniques usually relay on sequential algorithms. In this paper we propose a Active Learning technique for the fully automatic exploration and testing of Android applications, that parallelizes and improves a general algorithm proposed in the literature. The novel parallel algorithm has been implemented in the context of a prototype tool exploiting a component-based architecture, and has been experimentally evaluated on 3 open source Android applications by varying different deployment configurations. The measured results have shown the feasibility of the proposed technique and an average saving in testing time between 33% (deploying two testing resources) and about 80% (deploying 12 testing resources)
    • …
    corecore